Joint Analysis of Lensing, Clustering, and Abundance

Jaiyul Yoo

Institute for Theoretical Physics, University of Zürich Lawrence Berkeley National Laboratory, U.C. Berkeley

Collaboration with Uros Seljak

Cosmic Frontier Workshop, March 7, 2013

I. INTRODUCTION

Unification of LSS Probes

- various large-scale structure probes:
 - galaxy clustering, weak lensing, counting
 - various combination thereof: synergy, consistency
- motivation:
 - physical insight in a model-independent way
 - which method combination is **best?**
 - which galaxy sample?
 - extendibility to future survey

II. SDSS GALAXY SAMPLES

Modeling SDSS Samples

- observed SDSS galaxy samples:
 - SDSS Main, LRG, maxBCG (luminosity) samples
 - modeled as central galaxies (mass-bin halos)
 - mean mass from gg lensing, matching abundance
 - central galaxy luminosity-mass relation

Mandelbaum et al. 2006, 2008, Zehavi et al. 2011

- continuous mass-bin samples:
 - approximately matching the SDSS samples
 - for theoretical understanding

II. SDSS GALAXY SAMPLES: VARIOUS LARGE-SCALE STRUCTURE METHODS

Large-Scale Clustering

- base constraint on $b\sigma_8$
- fainter: larger sample variance, but lower shot noise
- brighter:
 larger volume, to but higher shot noise

Method I and II

- combine g-g lensing & large-scale clustering
- large-scale clustering: constraint on $b\sigma_8$
- method I:
 - small-scale lensing to constrain mean M
 - predict b(M) to combine clustering
- method II:
 - large-scale lensing to constrain amplitude $b\Omega_m\sigma_8^2$
 - cancel sample variance in clustering and lensing
 - independent of galaxy bias

Method

- measure
- fainter: lower 1 signal f lenses
- brighter: higher signal, fewer lenses, 5° fewer bg gals
- LRG or maxBCG yield best constraints

Method II

- measure cross-correlation
- no modeling of galaxy bias
- broad range: L4 ~ maxBCG
- ~5% level systematics in SDSS

Method III: Abundance

- thresholded sample
- mass-obs. scatter
- self calibration:
 clustering &
 lensing
- systematic errors? e.g., invisible halo, skewness

Bottom Line in SDSS

• abundance method (III) is powerful

• lensing +
clustering (I+II)
is equally
powerful

• systematics: less dominant yet!

III. FUTURE GALAXY SURVEYS

Extending to Future Surveys

- SDSS vs DES, Euclid, LSST
- Future surveys:
 - significantly lower threshold in flux
 - larger volume: less sample variance
 - shot noise vs total number
 - photometric vs spectroscopic surveys
- additional method:
 - cosmic shear measurements

Cosmic Shear

- statistically most powerful LSS probe, no galaxy bias
- systematics in measurements, baryon physics
- non-Gaussian covariance: set floor

Conclusion & Caveats

- purely statistical: no systematic errors included
- other ways to extract information on small scales
- redshift-space distortion: another powerful probe
 - nonlinearity, scale-dependent bias on larger scales
- combination of g-g lensing and clustering
 - work for a broad mass range with less systematics
 - as powerful as abundance or cosmic shear

Joint Analysis of Lensing, Clustering, and Abundance

Jaiyul Yoo

Institute for Theoretical Physics, University of Zürich Lawrence Berkeley National Laboratory, U.C. Berkeley

Collaboration with Uros Seljak

Cosmic Frontier Workshop, March 7, 2013